Intersection of Circles - Equal Areas Problem

Paul Sherard and Shidong Kan
University of Hawaii, Honolulu Community College
October 6, 2013

I. Problem

The original problem is described as: A farmer has a cow in a circular fenced-in pen. The farmer only wants the cow to eat one-half of the grass in the circular pen. He attempts this with a leash on the cow that is attached to the circular fence. The only question is: How long should the leash be relative to the radius of the pen?

Fig. 1
Fig. 1 shows the geometry of the problem: With the center of Circle 2 on the perimeter of a Circle 1, determine the radius of the Circle 2 such that the area of the intersection of the two circles is one-half of Circle 1. In Fig. 1 this implies the condition: $A_{\text {intersection }}$ equals one-half the area of Circle 1. Thus, our "equal area condition" is:

$$
\begin{equation*}
\mathrm{A}_{\text {intersection }}=(1 / 2)(\text { Area of Circle } 1) \tag{1}
\end{equation*}
$$

II. Geometric Solution

To solve the problem, the geometry is selected as shown in Fig. 2 below.

The Circle 1 has a radius r and Circle 2 has a radius R. We have also defined the angle θ, as shown. We are trying to find the ratio R / r. It is obvious that for the equal area condition $R>r$. Thus, the ratio R / r will be greater than 1 . To solve, the angle θ will be determined such that it satisfies the Eq. 1 equal-areas condition. To do this we must determine the area of the intersection of the two circles, $A_{\text {intersection }}$.

First let's get a relationship between R, r, and θ. We can draw the following triangle (Fig. 3):

We see that:

Fig. 3

$$
\begin{equation*}
\cos \theta=\frac{R}{2 r} \tag{2}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
\frac{R}{r}=2 \cos \theta \tag{3}
\end{equation*}
$$

Now will attempt to find θ such that the equal-areas condition holds. We will do this by determining the area of the intersection. First consider the area of A_{1}, as shown in Fig. 4:

We see that:

Fig. 4

$$
\begin{equation*}
A_{1}=\left(\frac{2 \theta}{2 \pi}\right) \pi R^{2}=\theta \cdot R^{2} \tag{4}
\end{equation*}
$$

Now we will determine the area of the remaining portion of the intersection area. This is the wedge section $\left(\mathrm{A}_{4}\right)$ shown in Fig. 5. By symmetry, the total contribution of the area is $2 \times \mathrm{A}_{4}$.

Fig. 5
Therefore area of the intersection is:

$$
\begin{equation*}
\mathrm{A}_{\text {intersection }}=\mathrm{A}_{1}+2 \mathrm{~A}_{4} \tag{5}
\end{equation*}
$$

Now we will determine the area A_{4} show in Fig. 5.
First consider the area of the triangle shown in Fig. 6.

Fig. 6

$$
\begin{equation*}
A_{2}=\frac{1}{2} r \cdot r \sin (\alpha)=\frac{1}{2} r^{2} \sin (\alpha) \tag{6}
\end{equation*}
$$

Where $\alpha=\pi-2 \theta$, thus:

$$
\begin{align*}
& A_{2}=\frac{1}{2} r^{2} \sin (\pi-2 \theta) \tag{7}\\
& A_{2}=\frac{1}{2} r^{2} \sin (2 \theta) \tag{8}
\end{align*}
$$

Now consider area of the entire wedge A_{3}, as shown in Fig. 7:

Fig. 7
Where:

$$
\begin{equation*}
A_{3}=\left(\frac{\alpha}{2 \pi}\right) \pi r^{2}=\frac{\alpha}{2} r^{2} \tag{9}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
A_{3}=\frac{1}{2}(\pi-2 \theta) r^{2} \tag{10}
\end{equation*}
$$

Now we determine the area A_{4} of the remaining portion of the intersection as shown in Fig. 5. Whereby $A_{4}=A_{3}-A_{2}$, thus:

$$
\begin{equation*}
A_{4}=\frac{1}{2}(\pi-2 \theta) r^{2}-\frac{1}{2} r^{2} \sin (2 \theta)=\frac{1}{2} r^{2}[(\pi-2 \theta)-\sin (2 \theta)] \tag{11}
\end{equation*}
$$

From Eq. $5, A_{\text {intersection }}=A_{1}+2 A_{4}$, thus:

$$
\begin{equation*}
A_{\text {intersection }}=\theta \cdot R^{2}+r^{2}[(\pi-2 \theta)-\sin (2 \theta)] \tag{12}
\end{equation*}
$$

[See Appendix 2 for a check of the limits to this equation.]
Our condition is that $\mathrm{A}_{\text {intersection }}=(1 / 2) \pi r^{2}$, thus:

$$
\frac{1}{2} \pi r^{2}=\theta \cdot R^{2}+r^{2}[(\pi-2 \theta)-\sin (2 \theta)]
$$

We divide by r^{2} :

$$
\begin{equation*}
\frac{\pi}{2}=\theta\left(\frac{R}{r}\right)^{2}+\pi-2 \theta-\sin (2 \theta) \tag{13}
\end{equation*}
$$

From Eq. 3:

$$
\begin{equation*}
\left(\frac{R}{r}\right)^{2}=4 \cos ^{2} \theta \tag{14}
\end{equation*}
$$

Finally, we substitute Eq. 14 into Eq. 13. This gives an equation in terms of θ only. We then set everything equal to zero:

$$
\begin{equation*}
4 \theta\left(\cos ^{2} \theta\right)-\sin (2 \theta)-2 \theta+\frac{\pi}{2}=0 \tag{15}
\end{equation*}
$$

To solve problem, we must find the root of this equation (for $\theta<90^{\circ}$). Once we determine the solution for θ, then we can use Eq. 3, to solve for $R / r \rightarrow R / r=2 \cos (\theta)$.

Since we cannot solve Eq, 15 analytically, we must resort to solving for θ numerically
We find that: $\theta \cong 0.952848 \mathrm{rad}$, thus, $R / r=2 \cos (\theta)$:

$$
\begin{equation*}
\frac{\mathrm{R}}{\mathrm{r}} \approx 1.15873 \tag{16}
\end{equation*}
$$

[See Appendix 1 for detailed discussion of numerical analysis.]

Appendix 1: Numerical Solution

We plot the functions:

$$
\begin{aligned}
& f(\theta)=4 \theta\left(\cos ^{2} \theta\right)-\sin (2 \theta)-2 \theta+\frac{\pi}{2} \\
& g(\theta)=0
\end{aligned}
$$

The intersection of these curves yields the roots of Eq. 15. The plots shown in Figs. A1-1 and A1-2, below, are for $f(\theta)$ and $g(\theta)$ at two different scales.

Fig. A1-1

Fig. A1-2

We know that the solution is in the range $\theta<\pi / 2 \quad(\theta<1.571)$.
Thus, we find that:
$\theta \cong 0.952848 \operatorname{rad}\left(54.594^{\circ}\right)\left[f(\theta) \sim 10^{-9}\right]$, thus $R / r=2 \cos (\theta) \cong 1.15873$

$$
\theta=0.952848 \operatorname{rad}\left(54.594^{\circ}\right)
$$

$$
\frac{\mathrm{R}}{\mathrm{r}} \approx 1.15873
$$

Solution.

From Eq. 12:

$$
A_{\text {intersection }}=\theta \cdot R^{2}+r^{2}[(\pi-2 \theta)-\sin (2 \theta)]
$$

We will consider two limiting cases for this solution.

1. No intersection

Fig. A2-1
In this limiting case, as shown in Fig. A2-1, the radius R of circle two goes to zero.
For $\mathrm{R} \rightarrow 0$, thus $\theta \rightarrow \pi / 2$, we expect $\boldsymbol{A}_{\text {intersection }}=\mathbf{0}$
Therefore: $2 \theta=2(\pi / 2)=\pi ; \sin (2 \theta)=\sin (\pi)=0$.
From Eq. (12) we have:
$A_{\text {intersection }}=(\pi / 2)(0)+r^{2}[(\pi-\pi)-0]$
$A_{\text {intersection }}=0+r^{2}[0-0]=0 \quad$ (as expected!).

2. Full intersection - Circle 2 encloses Circle 1.

Fig. A2-2

In this limiting case, as shown in Fig. A2-2, the radius R of Circle 2 is increased to entirely enclose Circle 1. The intersection in this limiting case is simply the area of Circle 1.

For $R=2 r$, thus $\theta \rightarrow 0$, we expect $\boldsymbol{A}_{\text {intersection }}=\boldsymbol{\pi} \boldsymbol{r}^{2}$.
Therefore: $2 \theta=0, \sin (2 \theta)=\sin (0)=0$
From Eq. (12) we have:
$A_{\text {intersection }}=0(2 r)^{2}+r^{2}[(\pi-0)-0]=0+r^{2}[\pi]$
$A_{\text {intersection }}=\pi r^{2} \quad$ (as expected!)

